智能自動化技術(shù)為儀器儀表與測量的相關(guān)領域的應用開辟了廣闊的前景。運用智能化軟硬件,使每臺儀器或儀表能隨時準確地分析、處理當前的和以前的數(shù)據(jù)信息,恰當?shù)貜牡?、中、高不同層次上對測量過程進行抽象,以提高現(xiàn)有測量系統(tǒng)的性能和效率,擴展傳統(tǒng)測量系統(tǒng)的功能,如運用神經(jīng)網(wǎng)絡、遺傳算法、進化計算、混沌控制等智能技術(shù),使儀器儀表實現(xiàn)高速、高效、多功能、高機動靈活等性能。
其次,也可在分散系統(tǒng)的不同儀器儀表中采用微處理器、微控制器等微型芯片技術(shù),設計模糊控制程序,設置各種測量數(shù)據(jù)的臨界值,運用模糊規(guī)則的模糊推理技術(shù),對事物的各種模糊關(guān)系進行各種類型的模糊決策。其優(yōu)勢在于不必建立被控對象的數(shù)學模型,也不需大量的測試數(shù)據(jù),只需根據(jù)經(jīng)驗,總結(jié)合適的控制規(guī)則,應用芯片的離線計算、現(xiàn)場調(diào)試,按我們的需要和精確度產(chǎn)生準確的分析和準時的控制動作。
特別是在傳感器測量中,智能自動化技術(shù)的應用更為廣泛。用軟件實現(xiàn)信號濾波,如快速傅立葉變換、短時傅立葉變換、小波變換等技術(shù),是簡化硬件,提高信噪比,改善傳感器動態(tài)特性的有效途徑,但需要確定傳感器的動態(tài)數(shù)學模型,而且高階濾波器的實時性較差。運用神經(jīng)網(wǎng)絡技術(shù),可實現(xiàn)高性能的自相關(guān)濾波和自適應濾波。充分利用人工神經(jīng)網(wǎng)絡技術(shù)強有力的自學習、自適應、自組織能力,聯(lián)想、記憶功能以及對非線性復雜關(guān)系的輸入、輸出間的黑箱映射特性,無論在適用性和快速實時性等各方面都將大大超過復雜函數(shù)式,可充分利用多傳感器資源,綜合獲取更準確、更可信的結(jié)論。其中實時與非實時的、快變與緩變的、模糊和確定性的數(shù)據(jù)信息,可能相互支持,也可能相互矛盾,此時,對象特征的提取、融合,直至最終決策,作出正確的判斷,將成為難點。于是神經(jīng)網(wǎng)絡或模糊邏輯將成為最值得選用的方法。例如,氣體傳感陣列用于混合氣體識別,在信號處理方法上可采用自組織映射網(wǎng)絡和BP網(wǎng)絡相結(jié)合,先進行分類,再識別組分,將傳統(tǒng)方法的全程擬合轉(zhuǎn)化為分段擬合,以降低算法的復雜度,提高識別率。又如,食品味覺信號的檢測和識別的難度,曾一度是研究與開發(fā)單位的主要障礙所在。如今可利用小波變換進行數(shù)據(jù)壓縮和特征提取,然后將數(shù)據(jù)輸入用遺傳算法訓練過的模糊神經(jīng)網(wǎng)絡,則大大提高了對簡單復合味的識別率。再如,在布匹面料質(zhì)量的評定,柔性*作手對觸覺信號的處理,機器的故障診斷領域,智能自動化技術(shù)也都取得了大量的成功實例。